个人简介
罗熙淳教授长期从事超精密加工装备制造及工艺开发和纳米制造技术研究,现任英国Strathclyde大学(原英国皇家理工学院)设计制造及工程管理系科研主任、教授、精密制造研究中心技术主任,国际纳米制造学会,国际工程技术促进学会和国际先进材料学会会士,欧洲精密工程及纳米技术学会科学委员会成员,英国国家基金委未来制造首席科学家,英国机械工程师学会会刊,微制造、纳米制造和测量编辑等国际期刊的副主编,国际极端制造,微小机器和制造展望等期刊编委。他于2002年在哈尔滨工业大学获超精密加工博士学位,2004年在英国里兹城市大学获精密工程博士学位。
罗熙淳目前已培养博士生17名,硕士生60余名。现指导博士后7名,博士生8名。罗熙淳于2010年被爱丁堡皇家学会评为“苏格兰未来制造学科学术带头人”。由于其在智能微纳制造研究的贡献,获英国机械工程协会(IMechE) 2015年度Ludwig Mond Prize (每年仅一人)。到目前为止,他出版专著两部,并在超精密加工权威刊物上发表了160多篇学术论文。
特邀报告
Study of subsurface integrity in nanomachining of gallium arsenide
砷化镓纳米加工亚表层完整性研究
特邀题目
Gallium arsenide (GaAs) has been a significant semiconductor substrate materialfor the growth of quantum dots (QDs). Gaining high surface integrity on GaAs is an important but challenging taskin nanomachining,as the material removal comes down to the nanometer level and the GaAs is very brittle.
This talk discusses employing nanomachining experiments using the atomic force microscope (AFM) and molecular dynamics (MD) simulations to investigate the influence of direction vector (e.g., tip alignment) on the surface generation process, plastic flow changes, dislocation nucleation and propagation, and subsurface integrity during the nanometric cutting of GaAs. The study shows that when the AFM tip’s cutting edge presented two acute angles (i.e., 30° angles each) to the cutting direction (which can be regarded as an oblique cutting condition in comparison with traditional machining research), this cutting configuration achieved the most effective depth of cut with the least subsurface plastic deformation depth. It also consumed the least energy in removing the material from the surface as opposed to two other configurations (i.e., 60° and 90° angles). The transmission electron microscopy and MD simulation results jointly revealed that the subsurface plastic deformation in the nanometric processing of GaAs can be ascribed to the shuffle-set slip on the {1 1 1} slip system, where the<1 0="" 1="">type dislocation activation led to residual plasticity. A good agreement between the MD simulations and AFM-based experiments in material removal plastic flow changes and effective depth of cut lent credence to the data obtained from both the experiments and the simulations. These findings will generate significant industrial impacts on the commercialization of GaAs-based quantum device technology in the near future.
砷化镓是用于未来量子器件的重要半导体材料,其亚表面完整性对于其性能至关重要。本报告主要报道运用原子力针尖结合分子动力学仿真对加工矢量对表面生成,位错形成和扩展,塑性流动和亚表层完整性等问题的研究。仿真和实验研究表明30度锐角加工矢量下可以获得最高的材料去除率和最高质量的亚表层完整性。同60度锐角和90度直角相比,该加工矢量具有最小的切削能。扫描电镜检测和分子动力学仿真研究证明亚表层塑性变形具有牌状叠层滑移面。<1 0="" 1="">位错运动导致了残余塑性。本研究为未来量子器件制造技术的研究打下了理论基础。


